Hyers-Ulam Stability of Euler’s Equation in the Calculus of Variations

نویسندگان

چکیده

In this paper we study Hyers-Ulam stability of Euler’s equation in the calculus variations two special cases: when F=F(x,y′) and F=F(y,y′). For first case use direct method for second Laplace transform. Theorem Example corresponding estimations Jyx−Jy0x are given. We mention that it is time problem Ulam-stability extremals functionals represented integral form studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam stability of Volterra integral equation

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

متن کامل

Hyers–ulam Stability of a Polynomial Equation

The aim of this paper is to prove the stability in the sense of Hyers–Ulam stability of a polynomial equation. More precisely, if x is an approximate solution of the equation x + αx + β = 0, then there exists an exact solution of the equation near to x.

متن کامل

Hyers-Ulam stability of K-Fibonacci functional equation

Let denote by Fk,n the nth k-Fibonacci number where Fk,n = kFk,n−1+Fk,n−2 for n 2 with initial conditions Fk,0 = 0, Fk,1 = 1, we may derive a functionalequation f(k, x) = kf(k, x − 1) + f(k, x − 2). In this paper, we solve thisequation and prove its Hyere-Ulam stability in the class of functions f : N×R ! X,where X is a real Banach space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9243320